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Abstract

In this work, we propose an end-to-end model for
weakly-supervised object localization and segmentation.
We build our model on CNN architectures which are orig-
inally used for classification. Firstly, we take advantage
of the global average pooling (GAP) layer which enabled
convolutional layers to preserve their ability of localiza-
tion. Meanwhile, using layerwise training, we find that our
model can extract features greedily, endowing our model
with a remarkable ability to segment objects with clear
boundaries. Our model is evaluated on a newly collected
dataset (WhereIsSolar) which contains 475k remote sensing
images for solar panel detection. Experiments show that
our model achieves competitive results compared with the
current state-of-the-art weakly-supervised approach.

1. Introduction

Convolutional Neural Networks (CNNs) has seen a
rapid resurgence after Krizhevsky et al.[8] demonstrated
their significant capability in visual recognition tasks on
ImageNet[2]. CNN can be used for not only image-level
classification, but also object localization, object detection,
semantic segmentation and instance segmentation. The tar-
get of object localization or detection is to draw the bound-
ing box of an object in an image, while segmentation task
is to make pixel-level classification in an image. All these
algorithms or models have broad applications in real world,
such as pedestrian detection, face recognition, vehicle de-
tection and object identification/segmentation in satellite
imagery, etc.

Current state-of-art semantic segmentation methods are
mainly based on Fully Convolutional Network (FCN)[11],
which is trained with pixel-to-pixel supervision. With
VGG-16 framework, the test time speed is lower than 5 im-
ages/second, which is not high enough for real-time seg-
mentation. Current state-of-art object detection methods

can be divided into two categories: one category is the R-
CNN based methods[5, 4, 14], which first generate regions
of interest (RoI) and then do classification and bounding
box regression on these regions. One disadvantage of this
type of models is their slow speed. Even Faster R-CNN[4],
armed with Region Proposal Network, can only achieve a
speed of 5 images/second with VGG-16 framework at test
time. Another category includes end-to-end methods with-
out region proposal such as YOLO[13] and SSD[10], which
output all class scores and bounding box information with a
single network. While these methods are much more time-
efficient, their performances are not comparable to R-CNN
based methods.

Though different, the two categories of methods men-
tioned above share a common problem that they are all
fully-supervised. Concretely, bounding box annotations are
needed for object detection or localization and pixel-level
class labels are required for segmentation. Although these
annotations are available for benchmark computer vision
datasets, such as ImageNet, PASCAL-VOC[3], it is very ex-
pensive to collect them in real-world applications because
annotating bounding boxes or object boundaries can be
very time-consuming compared with image-level labeling.
Therefore, it is necessary to develop an unsupervised, or
semi-supervised object detection and segmentation method
based on image-level labels, which are much easier to be
available in most cases.

2. Related Work

Recent work has revealed that CNN itself has strong
ability in localizing objects. Zhou et al. [21] pointed out
that the convolutional units of various layers of CNNs be-
haved as object detectors despite no supervision on the lo-
cation of the object was provided. However, this remark-
able ability to localize objects in convolutional layers will
be lost when fully-connected layers are used for classifi-
cation tasks. Instead, with fully-connected layers replaced
with global average pooling (GAP) layers, even the last con-

1



volutional layer in the network can preserve the ability of
localization, thus the model trained for classification with
image-level labels can also be used for object localization.
Other work [12] also used global max pooling (GMP) to
replace fully-connected layers for localization. Compared
with GMP-based method, which can only localize one point
in the boundary of an object, the GAP-based can find nearly
the full extent of the object.

Although Zhou’s best model proposed in [21] achieved
37.1% top-5 test error, close to the 34.2% top-5 test error
achieved by fully supervised AlexNet[8] for weakly super-
vised object localization on ILSVRC 2014 benchmark[15],
there still exist two problems. Firstly, replacing fully-
connected layer with GAP reduces classification perfor-
mance. Top-1 classification error increased 2.2% for VGG-
16-based model after this modification and 3.8% for the
GoogLeNet-based model. Secondly, with the network go-
ing deeper, spatial dimensions of feature maps decrease and
activations will be attenuated, resulting in a low resolution
activation map with blurred object boundary. And only the
salient part of an object, which is the most activated, can be
localized. In fact, this is a major trade-off in CNN: the fea-
tures in upstream layers are complete, generic but too noisy
for accurate classification and object localization, while fea-
tures in downstream layers are pure and specific for classifi-
cation. During the feed-forward process, a large part of the
features are filtered out as activations decay layer by layer,
leaving only the most salient features remained, which is
good for classification but not good for extracting the full
region of an object.

In our work, we aim to greedily extract features at mid-
level stage layers using layerwise training. This method will
not only preserve activations but also make features gradu-
ally specific at the same time. We also aim to keep high
classification accuracy while utilizing it for object localiza-
tion and segmentation.

3. Methodology
Our model is built on well-designed classification CNN.

We keep the original framework for classification but design
branches for localization. Although the branches are still
trained to minimize the classification loss, with global aver-
age pooling (GAP) layer, class activation map (CAM) can
be generated for object localization and segmentation with
only the supervision of image-level labels. On the other
hand, we use greedy layerwise training to extract features
for improving localization and segmentation results.

3.1. Global Average Pooling

In [9], global average pooling is used as a structural reg-
ularizer to prevent overfitting during training. For our pur-
pose, global average pooling acts not only a way of regu-
larization but also a tool for building class activation map.

Also, it will make the CNN invulnerable to different in-
put image size, while fully-connected layers cannot adapt
to different input size.

As mentioned in previous section, one similar pooling
method is global max pooling (GMP), which can also be
used for weakly-supervised object localization. Based on
prior work[12], we believe that GAP encourages the net-
work to detect the extent of the whole object as GMP en-
courages it to focus on identifying one discriminative part
of the object. Intuitively, this phenomenon can be explained
by the difference of average and max function: average of a
map takes all activations and during training, the values can
be maximized by finding all discriminative parts of an ob-
ject, while doing a max simply wipes out all low activations
except the most discriminative part.

According to Zhou et al.’s experiments on ILSVRC
dataset, GMP achieves similar performance as GAP in clas-
sification but outperforms in localization. In order to ob-
tain stronger ability of localization and better compare our
model with theirs, we use GAP as the pooling method.

3.2. Class Activation Mapping

A class activation map (CAM) shows discriminative im-
age regions of a specific category for CNN to identity it.

For a given image, denote the activation of pixel (x, y)
on unit i in the last convolutional layer to be hi(x, y). The
height of the feature activation maps is h and the width is
w, Then, the result of performing global average pooling is

Hi =
1

hw

∑
x,y

hi(x, y) (1)

since hw is a constant in a known network, this term can be
simply neglected and Hi then becomes

∑
x,y hi(x, y).

For a given class c, the neuron output Sc before softmax
is
∑

i wicHi where wic denotes the weight (importance) Hi

relative to class c. By plugging in the expression of Hi into
Sc, it can be obtained that

Sc =
∑
i

wicHi

=
∑
i

wic

∑
x,y

hi(x, y)

=
∑
x,y

∑
i

wichi(x, y)

(2)

Finally after softmax, the output of class c can be ex-
pressed as

exp(Sc)∑
c exp(Sc)

(3)

bias terms are ignored in our case. Based on Eq. 2 and Eq. 3,
it can be observed that the term

Mc =
∑
i

wichi(x, y) (4)
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Figure 1. Classification activation map (CAM)

explicitly indicates the importance of the activation at pixel
(x, y) leading to classifying an image as class c.

Intuitively, hi(x, y) is the map of the presence of some
visual pattern[20, 19]. As Fig.1 shows, the class activation
map Mc is a weighted linear sum of all visual patterns ob-
served in images of class c. To identify the regions on an
image mostly related to a particular class, we can simply
upsample the class activation map to the size of the image.
This is an excellent property of CNN, which make weakly-
supervised object localization and segmentation possible.

3.3. Greedy Layerwise Training

Previously, greedy layerwise training were com-
monly used for unsupervised pre-training of deep neu-
ral networks[1] with a target of overcoming the initializa-
tion problem in training a deep neural network. It has
been proved that greedy layerwise unsupervised training
can serve as a good weight initialization for optimization.
However, this approach has been no longer necessary after
numbers of advanced training techniques emerged, such as
ReLU [6], Dropout [17] and Batch Normalization [7], but it
sheds light on extracting features greedily layer by layer to
generate specific but undiminished representations.

Inspired by this idea, we utilize layerwise training to
greedily extract the specific, discriminative but complete
region of an object in localization and segmentation tasks.
Why greedy layerwise training works can be illustrated with
the feature evolution map (as is shown in Fig.2). For any
deep feed-forward network, upstream layers learn low-level
features such as edges and basic shapes, while downstream
layers learn high-level features that are more specific and
abstract. Therefore, feature maps at low level are noisy
and less relative to specific classes. However, they have
two advantages: First, few features are filtered out and
most are reserved. Second, the resolution of the feature
maps is high. By contrast, the feature maps at high level
are more indicative of specific classes. Using such feature
maps for classification can often yield good accuracy. How-
ever, many features which are not very indicative of specific
classes are filtered out and the resolution becomes lower
after multiple downsamplings during the feed-forward pro-
cess. As the CAM is a linear combination of the feature
maps, CAM generated at low-level hierarchy is more com-
plete, noisier and has higher resolution, while CAM gener-
ated at high-level hierarchy is more specific, discriminative
and has lower resolution. This can be regarded as a trade-off
in representation learning.

However, with greedily layerwise training for classifica-
tion, we can break such trade-off and generate complete,
clear but also specific and discriminative CAM. This is be-
cause minimizing the classification loss can be regarded
as a process of extracting features indicative of the target
classes. Therefore, training the layers at low-level or mid-
level hierarchy for classification can extract specific features
from a complete and noisy upstream feature map and thus
generate feature map that are both complete and specific.
If we repeat this process for several times, we can get bet-
ter CAM for object localization and segmentation. From
Fig.2 we can see that CAMs generated with layerwise train-
ing keep the complete object boundary but also reduce the
noise. To sum up, the essential intuition behind greedy lay-
erwise training is to greedily extract features to balance the
specificity of representations and completeness of activa-
tions, and keep a comparably high resolution of the class
activation map as well.

Specifically, we train a single convolutional layer plus a
GAP layer and a linear classifier for image-level classifica-
tion at a time, based on a pre-trained network for classifica-
tion. Then we discard the last GAP and linear classifier and
add a new convolutional layer with a GAP layer and a new
linear classifier at the end of the last trained convolutional
layer, and also train the newly added layers separately. Note
that unlike Zhou’s model [12], which removed last layers of
the original architecture and replaced them with GAP lay-
ers, we keep the completeness of the original architecture
but add another branch right after a mid-level convolutional
layer for object localization and segmentation. Therefore,
another advantage of our model is that classification ability
of the original model will not decrease at all.

When training a single Conv-GAP-Linear structure, we
keep other layers completely fixed, thus weights and biases
of those layers will not be updated. This process is illus-
trated in Fig.3.

4. Experiments

4.1. Dataset

WhereIsSolar is an aerial image dataset developed
by Stanford Sustainable Systems Lab for solar panel iden-
tification with remote sensing imagery. The target is to
make household-level localization and area estimation of
distributed solar panels. There are 381,805 samples in train-
ing set, of which 47,480 are positive samples (containing
solar panels), and 93,500 samples in test set. In training set,
only image-level annotations are available, but in test set,
the polygon regions of solar panel in positive samples are
annotated. Therefore, it is a good benchmark dataset for
testing our weakly-supervised object localization and seg-
mentation method.

3



Figure 2. Feature evolution

Figure 3. Greedy layerwise training

4.2. Setup

Our model is adaptive to various CNN frameworks in-
cluding AlexNet, VGG, GoogLeNet, ResNet, etc. In this
work, we experimented our method on VGG-16 [16] and
GoogLeNet Inception v3 [18]. Due to the limit of time and
computing resource, we have only experimented up to two
convolutional layers in the branch.

4.2.1 VGG-16

Using pre-trained VGG-16 network as the base frame-
work for classification, we added the branch of localization
and segmentation after CONV4 3 layer. And we designed
the branch to have the following layers:

1. CONV: 3x3x512, 512 filters, 1 stride

2. ReLU: max(xi, 0)

3. CONV: 3x3x512, 512 filters, 1 stride

4. ReLU: max(xi, 0)

5. GAP:
∑

x,y hi(x, y)

6. Softmax: exp(Sc)∑
c exp(Sc)
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Figure 4. Comparison among input images, CAMs generated by Zhou’s model [22] and our greedily layerwise trained models

4.2.2 GoogLeNet Inception v3

We also experimented on GoogLeNet Inception v3. The
branch for localization and segmentation was built at the
end of the 35×35×288b layer as follow:

1. CONV: 3x3x288, 512 filters, 1 stride

2. ReLU: max(xi, 0)

3. CONV: 3x3x512, 512 filters, 1 stride

4. ReLU: max(xi, 0)

5. GAP:
∑

x,y hi(x, y)

6. Softmax: exp(Sc)∑
c exp(Sc)

4.3. Training

First, we fine-tuned the model pre-trained on ImageNet
for classification with the a subset of training set for 30
epochs. We only used a subset with the size of 42,070 for
training due to training time consideration. The initial learn-
ing rate is 0.001, and decay with a factor of 0.5 every 7

epochs. Once it is done, we executed the greedy layerwise
training process and trained up to 2 convolutional layers in
the branch. The learning rate is 0.005 and the total number
of epochs is 20 for training the branch.

5. Results and Discussion

We first report results on image classification to prove
that our method preserves the best classification perfor-
mance. Then we demonstrate that our approach is effective
and better than Zhou’s model for weakly-supervised object
localization and segmentation.

Classification: Tbl.1 summarizes the classification per-
formance of both Zhou’s GAP networks and our greed-
ily layerwise trained models. In the table, GAP indicates
Zhou’s model and GAP+Greedy indicates our model. We
can find that for both VGG-16 and Inception v3 frame-
works, both precision and recall of our models are higher
than those of Zhou’s model. Among them, Inception-
GAP+Greedy has the best performance since Inception v3
itself is a better framework than VGG-16. In fact, it is im-
portant for the networks to perform well on classification
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Figure 5. Examples of segmentation results generated with greedy
layerwise training

in order to achieve a high performance on localization as it
involves identifying both the object category and the bound-
ing box location accurately.

Table 1. Classification results
Model Precision Recall

VGG-GAP 78.3% 82.2%
VGG-GAP+Greedy 86.4% 86.5%

Inception-GAP 87.5% 83.1%
Inception-GAP+Greedy 93.5% 92.2%

Localization and Segmentation: Fig.4 shows class
activation maps generated by Zhou’s model and models
trained with our greedy layerwise method. It can be ob-
served that our model has much better performance versus
GAP networks in localizing and segmenting solar panels.

Zhou’s model is able to detect salient parts of solar pan-
els, such as panel edges, but activations are low in non-
salient parts, while our greedy layerwise method can extract
nearly complete regions of solar panels and boundaries are
much clearer. This is due to our greedy feature extraction at
the mid-level hierarchy of the network, which keeps both
completeness and specificity. Moreover, the CAM gen-
erated with our model has higher resolution than that of
Zhou’s model. For VGG-16, CAM generated with Zhou’s
model has resolution of 14 × 14 but ours is 28 × 28. For
Inception v3, CAM generated with Zhou’s model has reso-
lution of 17 × 17 but ours is 35 × 35.

In order to perform localization and segmentation, we
need to generate a bounding box around the object with
its associated category. To draw a bounding box from the
CAMs, a simple thresholding technique is used to segment
the feature map. First, we segment the regions of which
the value is above 0.5 of the max value of the CAM. Then
we take the bounding box that covers the largest connected
component in the segmentation map. Fig.5 shows some
segmentation examples and Fig.6 shows some bounding
boxes example generated using this technique (Inception-
GAP+Greedy). The localization performance on the test set

Figure 6. Examples of bounding boxes generated with greedy lay-
erwise training

is shown in Tbl.2. The metric we used for evaluation is in-
tersection over union (IoU) between ground truth bounding
box and predicted bounding box.

Table 2. Localization results
Model IoU

VGG-GAP 0.654
VGG-GAP+Greedy 0.679

Inception-GAP 0.607
Inception-GAP+Greedy 0.728

We observe that our models outperform all the base-
line approaches (Zhou’s model) in object localization tasks.
Among them, Inception v3-based model with greedy layer-
wise training has the highest IoU of 0.728, which is remark-
able given that this network has not been trained with even a
single annotated bounding box. Further, we observe that the
performance of Inception-GAP is the poorest despite that
Inception is a better framework than VGG-16. The reason
may be that Inception is a deeper network and a large part
of features have already been diminished after the filtering
effect of many layers, thus the high-level features are not
suitable for segmenting a complete object boundary. By
contrast, greedily extracting features from low-level hierar-
chy can overcome this problem.
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6. Conclusion
In this work, we propose the greedy layerwise training

method for weakly-supervised object localization and seg-
mentation. Armed with global average pooling (GAP) and
class activation map (CAM), CNNs trained for classifica-
tion are endowed with the ability to draw the discrimina-
tive object boundaries. With greedy layerwise training at
mid-level hierarchy of the network, features can be greedily
extracted to keep both completeness and specificity, con-
tributing to an accurate and clear boundary for an object.
The experience results on WhereIsSolar dataset shows that
our models can preserve the best classification ability and
also yield better results on localization and segmentation
tasks. We hope our work can draw attention to the benefit
of greedy layerwise training, which is popular at the ini-
tial stage of deep learning but rarely raised in current deep
learning community.

7. Suggested Future Work
Through our experiments, we have obtained promising

results. However, we still need to quantify our results other
metric such as mAP. Moreover, we need to find out at which
hierarchy to add a branch for object localization and seg-
mentation can achieve the best results, and how many con-
volutional layers need to be greedily trained in that branch.
Also, if more computing resource is available, we will test
the performance of our model on more general computer vi-
sion benchmark datasets, such as ILSVRC 2014, PASCAL-
VOC, and compare it with previous model under the same
base frameworks.
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