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Abstract

This is the final project report for CS231A at Stanford
University, Spring 2017. The goal of this project is to com-
bine object detection and image inpainting, creating an end-
to-end scene restoration pipeline. This paper first sum-
marizes related methods of object detection and inpaint-
ing, then discusses our attempt to improve existing meth-
ods. This paper further lays out implementation details of
our methods and in the end discusses experimental results
of different methods.

1. Introduction
1.1. Motivation

Are you annoyed when a John Doe sneaks into your
photo of Yosemite and you do not know how to Photoshop?

Scene restoration has been studied intensively over the
years. Usually this practice is used to remove unwanted
objects(an intruding person etc.) or defects(scratches, dust
spots, etc.) in the image. To remove unwanted areas and
then fill those areas without prior knowledge about the orig-
inal scene is called inpainting.

In most cases, this practice requires a binary mask (a
grayscale image) to indicate where inpainting should be
performed. Traditionally, this mask is cropped manually,
which is tedious and time-consuming. However, the emer-
gence of object detection algorithm makes automated de-
tecting unwanted object possible. Two of the most fa-
mous algorithm (also discussed in class) are Scale-invariant
feature transform (SIFT) and histogram of oriented gra-
dients (HOG). These methods are computationally sim-

ple, both for training and detection. Besides, there have
been attempts to detecting object using convolution neu-
ral networks[13][11], which can achieve more accurate and
finer detection and segmentation. However, those methods
require long training time and are of very high computa-
tional cost that normal personal computers cannot afford .

1.2. Objective

For the project, we would like to design an end-to-end
pipeline incorporating object detection and inpainting for
scene restoration. For image detection, for computation
complexity concern, we will use HOG feature descriptor
to draw a bounding box around detected figure. With this
bounding box, we will create a binary mask for the area to
be inpainted and then feed to the next step of our pipeline.
For image inpainting, we will implement exemplar-based
image inpainting proposed by Criminisi et al. [5], then
seek potential to make improvements to the existing algo-
rithm. When we were implementing the exemplar-based in-
painting, we also read about another interesting inpainting
method, which is sparse coding based image inpainting[1].
This method is not a part of our scene restoration pipeline,
but we will also briefly explain its dynamics and then im-
plement it and then evaluate its performance.

2. Related Work
Scene restoration has received intensive attention over

the years. There are mainly two types of algorithm. The
first algorithm is texture synthesis, which is to recover de-
graded area with its structural content information. Efros
et al. proposed to predicts unknown textures by repetition
of two-dimensional textural patterns. They build a Markov
random field model and utilize a probability table to obtain
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the probability distribution of a query point p in the sampled
image, and then fills the point with the pixel value whose
probability is the greatest[7].

Another common method is inpainting, which is inspired
by partial differential equations. It fills the missing area by
propagating linear structure (called isophotes) and then in-
terpolating them with weighted sum of their known neigh-
bor pixels. Ballester et al.. proposed to interpolate missing
data by solving the variational problem via its gradient de-
scent flow. The basic idea is to smoothly propagate known
pixels into unknown areas based on image gradient and their
corresponding pixel values.[2]. Criminisi et al. proposed
a new way to propagate isophotes by adding a confidence
term to decide the filling sequence. They define a confident
pixel as a pixel near isophete and with more known neigh-
bors. More confident pixel will be filled earlier[5].

However, the aforementioned methods all require user
segment the deteriorated region manually. We want to ex-
tends present inpainting methods by adding automated re-
gion labeling. Objection detection is one of the most essen-
tial area of computer vision. One of the most famous ob-
ject detection algorithm is Scale-invariant feature transform
(SIFT), which utilizes the information of local gradient di-
rections of image intensities to match targeted area with cer-
tain object. SIFT is invariant to translation, scaling and ro-
tation so it is especially robust to match 2D objects without
major perspective changes[10]. HOG[6] feature descriptor
is another common approach to detect object. It is origi-
nally proposed to detect human objects. For this project,
we mainly focus on removing unwanted person in the im-
age, so HOG is adopted to perform object detection.

3. Technical Approach

3.1. Histogram of Oriented Gradients

Histogram of Oriented Gradients(HOG) has been one of
the most popular and successful person detectors since it
was proposed in 2005. HOG is a type of feature descrip-
tor, of which the purpose to generalize the object in such a
way that the same object (in this case a person) produces
as close as possible to the same feature descriptor when
viewed under different conditions. This makes classifica-
tion much easier.

The authors of HOG trained a Support Vector Machine,
i.e. SVM, which is a kind of machine learning algorithm for
classification to recognize HOG descriptors of people.

Compared to SIFT, HOG person detector is relatively
simple to understand. One of main reasons is that it uses
a global feature to describe a person rather than a collection
of local features. To put in another way, this means that
HOG represents the entire person object by a single fea-
ture vector, as opposed to many feature vectors representing
smaller parts of the person.

The HOG person detector uses a “sliding window” ap-
proach: at each position of the detector window, a HOG de-
scriptor is computed for the window. Then this descriptor
is shown to the pre-trained SVM, which is used for classifi-
cation. For the purpose of recognizing persons at different
scales, the image can be subsampled to multiple sizes. Each
of these subsampled images will be searched.

Since training HOG and linear SVM classifier is not the
center of this project, the general algorithm of training will
not be discussed here.

3.2. Inpainting

1. Exemplar-based inpainting
We first implemented exemplar-based region
inpainting[5]. One crucial problem for inpaint-
ing is to decide filling orders of pixels in the area
to be inpainted. Different filling orders may lead
to different inpainting results[5]. Criminisi et al.
proposed to decide the filling order by assigning
scores to each pixel in the deteriorated region. The
pixel with the highest score gets inpainted first. They
take two factors into consideration. The first factor
is the confidence term, which describes how much
a pixel is in the source area. The second factor is
called the data term. It describes how close a pixel is
to an isophote. The term isophote is wildly used in
the inpainting literature. It is defined as the contour
of equal luminance and chrominance in an image.
Criminisi et al. thinks a pixel with the most known
neighbors and closest to isophote are of highest score.
The way they calculate filling priority of pixel p can
be described using the the following equations.

P (p) = C(p)D(p) (1)

where

C(p) =

∑
q∈Φp∩(I−Ω) C(q)

|Φ(p)|
which denotes how many known pixels are around
pixel p, and

D(p) =
|∇I⊥p · np|

α

which denotes how close a pixel p is to isophote in
known regions.

After they find the pixel p with highest priority, they
search the most similar patch from known regions to
fill the unknown region centered by pixel p. The
scheme to evaluate similarity here is simply the sum
of square difference of already filled pixels in two
patches.

Ψq̂ = arg max
Ψq∈Φ

sim(Ψq̂,Ψq) (2)
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Figure 1: Algorithmic flow of the Single-image Super-Resolution with NLM-priority based inpainting.

Figure 2: Illustration of examplar based inpainting: a)We
denote source region (known region) with Φ, the target re-
gion to be filled with Ω, and fill front with δΩ. b)&c) The
most likely candidate to be filled is pixel with most known
neighbors and closest to the boundary of two textures in the
source region. d) We fill the region centered by pixel p with
the most similar patch in the source region. Note we only
keep p’s pixel value.

Note that only the pixel value of p is preserved while
other values in the unknown area are discarded. Then
p is considered a known pixel and added to the source
region. This algorithm iteratively fill regions in the fill
front until all pixels in the unkwown regions are filled.
Figure 1 better illustrates how the algorithm works and
all the notation used here.

2. Super Resolution based inpainting
Beside implementing existing methods in inpainting
literature, we also seek the potential to make improve-
ments to those algorithms. Our first attempt is to com-
bine super resolution with exemplar-based region fill-
ing, which is inspired by Le et al’s work[9]. This
method improves exemplar-based inpainting by down-
sampling the image before inpainting. After down-
sampling, we implement exemplar-based inpainting on
down-sampled coarse image. This pre-processing step
preserves the dominant structure of the original image,
so it helps prevent singular patches or even noise from
exerting influence on region filling. One thing worth
our notice is that during the down-sampling step, alias
might appear especially in the high frequency areas
of the image if the sampling frequency is less then
Nyquist frequency. To avoid this, we apply an anti-
aliasing filtering, which is a Gaussian low pass filter,
to the original image. This filtering step not only pre-
vent alias from appearing, but also helps remove noise,
generating a smoother result.

After we finished inpainting of down-sampled course
images, we need to combine images of low resolution
back to one single high resolution image. Here we use
a single-image super resolution method. There have
been various imaging literature on restoring the high
resolution image, like one proposed by Glasner et al.
in 2009 [8]. However, we decide to use classic bicubic
interpolation method due to computation complexity
concern.

3. Unsharp masking

As a post-processing step of super-resolution based in-
painting, we apply unsharp masking[4] to enhance the
high frequency component of the image and achieve
sharpened image. To enhance the high frequency com-
ponent, we first need to find high frequency compo-
nent. For high-pass filtering, it’s not easy to form a
”soft” cutoff frequency like how we do it for low-pass
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filtering(gaussian filter). However, a hard cutoff fre-
quency may lead to ringing effect. To enhance the im-
age without ringing effects, unsharp masking comes
into place. Formally, the process can be written as

b = F−1(F (x)− F (x) · F (c))

where c is a low-pass Gaussian kernel, x is the input
image, b is the resulting image, and operator F , F−1

denote Fourier transform and its inverse. This addi-
tional step contributes in highlighting the details of the
post-SR image. The overall process of inpainting can
be illustrated in the flowchart in Figure 1.

4. Experiment with different confidence terms
To decide pixel priority is crucial to inpainting. Differ-
ent inpainting sequence may lead to completely dif-
ferent results[5]. Thus it is worth our effort to ex-
ploring different approach to compute region priority.
The exemplar-based inpainting utilizes a confidence
term C(p) to describe how much a pixel in fill front
is in the source region, and a data term to describe
how close it is to the boundary of two textures in the
source region (how close this pixel is to a gradient
dense area). Here instead of using gradient-based data
term, we propose to utilize non-local mean to decide
data confidence. The intuition is based on the follow-
ing observations[15]. First, structures are sparsely dis-
tributed while textures are less sparesely distributed.
Second, neighbor regions with high similarity are more
likely to have the same structure and texture layout to
the patch to be filled. So we model the data term as
follows.

Dij = ‖ 1

Z(i)
exp(−

∑
mn(kmnv((Ni)mn − (Nj)mn))2

2

h2
)‖2

(3)
where

Z(i) =
∑
j

exp(−‖v(Ni)− v(Ni)‖22
h2

) (4)

Here v(·) denotes the i-th pixel value in original
image[3].

3.3. Sparse coding based image inpainting

Computationally, the problem of inpainting can be mod-
eled as follow

‖y −Dx‖p ≤ ε

where y ∈ Rn is the vectorized undegraded image, D ∈
Rn×k, k > n denotes an over-complete dictionary, and x ∈
Rk is the coefficients of the image y.

Since k > n and D is required to be full rank matrix, this
problem is an under-determined problem. There are infinite
many solutions to the equation, and we choose the sparsest
one as the solution we want. However, finding the spars-
est solution to the above equation is an NP-hard problem.
Thus, pursuit algorithms to approximate the true solution
comes into place[1]. Three pursuit algorithms are wildly
used in solving sparse coding problem, which is basis pur-
suit(BP), matching pursuit(MP), and orthogonal matching
pursuit(OMP). For performance as well as efficiency, we
adopt OMP in the following steps.

Algorithm 1 Orthogonal Matching Pursuit
Input: Signal y ∈ Rn, dictionary D ∈ Rn×k

Signal: y ∈ RN

Dictionary: D ∈ RN×k

L: sparsity constraint Output: Coefficient vector α ∈ Rk

Initialization: r0 = y
REPEAT UNTIL CONVERGE:
- p = DT rk−1

- lk: add to list index where column |p|i is maximum
- Dk: atoms from D which have entries in lk
- xk ← argminx‖y −Dx‖
-rk = y −Dkxk

In this problem, both x and D are unknown. We can find
x using any pursuit algorithm as discussed before. The next
step is to discover an over-complete dictionary D to best
represent the signal to be recovered. A simple way is to use
a pre-defined dictionary. In some cases, it leads to fast and
efficient implementation. Discrete cosine transform (DCT)
, wavelets, curvelets, short-time Fourier transform etc. are
usually used as described in literature[14].

However, these dictionaries are not adaptive to the
changes of signals. Another choice is to learn a dictionary
that suits the specific problem better. One of the methods
of learning a dictionary is called K-SVD. The algorithm is
described in Algorithm 2 [1]. We will evaluate the perfor-
mance of different dictionaries in the following sections.

4. Experiment
4.1. Implementation Details

4.1.1 Person Detection via HOG

We used OpenCV to implement HOG feature descrip-
tor and adopt its pre-trained SVM classifier to per-
form person detection. We created a HOG object via
cv2.HOGDescriptor(). To enable its capability of
classification, a SVM classifier should be attached to this
object. There exist three different types of detectors in
OpenCV with different sizes, and we choose the default
one.
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Algorithm 2 K-SVD
Input: Y ∈ Rn×p: each column in Y represent a training
sample randomly chosen from the training set
Output: D ∈ RN×k: a learned dictionary with k atoms
Initialization: set D with k normalized columns, iter = 0

REPEAT UNTIL CONVERGE:

• Sparse Coding Stage:
Use any pursuit algorithm to compute the representa-
tion vectors in A column by column.

• Update dictionary Stage:
FOR EACH COLUMN IN D
- Define the group of example that use this atom, ωk =
i, 1 ≤ i ≤ N, xkT 6= 0
- Compute the overall error matrix Ek,

Ek = Y −
∑
j 6=k

djx
j
T

- Restrict Ek by choosing only the columns corre-
sponding to ωk and obtain ER

k

- Compute SVD of ER
k and obtain ER

k = UΣV T .
Update current column in dictionary D with the first
column of U. Update the coefficient vector xkR with
Σ(1, 1)V (:, 1)

4.1.2 Inpainting

To evaluate the performance of different inpainting algo-
rithms, we use images from not only standard inpainting
scholar articles, but also photos from our own photo li-
braries taken by commercial cameras of phones.

For this stage of evaluation, we used hand-cropped
masks, since we our focus is on various inpainting algo-
rithm instead of the whole scene restoration pipeline.

4.1.3 Sparse coding based inpainting

To train a dictionary, we use 4 images with human faces
from USCimages1. We didn’t include the lena image in the
training to avoid bias.

4.2. Results

4.2.1 Results for object detection

We tested our trained HOG feature descriptors on both im-
ages from the Internet and our own photo libraries. The
results are presented in Figure 3.

1http://www.ux.uis.no/˜karlsk/dle/

Original images with people Original images with people

Detection Results Detection Results

Figure 3: HOG detection results

We can see in Figure 3 that all people in the images are
detected by HOG. One thing worth notice is that the shadow
of the people isn’t circled by the bounding boxes, which
may cause some artefacts.This will be discussed in the fol-
lowing sections.

4.2.2 Results for inpainting

1. Exemplar-based inpainting result
We tested the exemplar-based image inpainting both
with image inpainting datasets and our own photos.
Figure 6 shows the results. As can be seen, exemplar-
based method’s reconstruction are visually satisfying,
although artefacts still exist (e.g. the ”intrusive” green
pattern in the roof in the Bungee reconstruction result).

Figure 4: a) original, b) mask, c) exemplar-based results, d)
confidence plot.

2. Single image super resolution based inpainting
We present our results for SR-based image inpainting
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in Figure 5. We can see that for this set of images,
SR-based inpainting can achieve artefact-free results.

Figure 5: a) original image, b) mask, c) post-inpaint, d) SR
and sharpened final image

3. NLM based image inpainting
Results of NLM based image inpainting are presented
in parallel with exemplar-based inpainting in figure 6
and 7. Figure 6 shows a comparison of the recon-
struction results between NLM and exemplar based in-
painting, while figure 7 shows the difference between
their confidence and data terms. Two algorithm all
achieve satisfying results, while NLM-based inpaint-
ing are slightly better in the reconstruction of Bungee
image. Less artefacts can be observed on the NLM-
based reconstruction results.

Figure 6: a) original img, b) mask, c) Exemplar-based
method, d) NLM.

Figure 7: a) Exemplara-based confidence plot, b) NLM’s
confidence plot, c) NLM’s similarity plot.

4.2.3 Creating the pipeline

Once we have explored the performance of our proposed
object detection and inpainting approaches, we want to
show the results of combining the two component to an end-
to-end scene restoration pipeline. Figure 8 illustrate each
component in the pipeline.

Figure 8: Illustration of the end-to-end pipeline

We present more scene restoration results in Figure 9.
We can see that all people in the input images are success-
fully detected by HOG, and our proposed inpainting algo-
rithms successfully filled the region specified by the gener-
ated mask. Very few artefacts can be observed.

4.3. Results for sparse coding based inpainting

4.4. Sparse Coding

The results of sparse coding based inpainting is shown
in Figure 10, Figure 11 and Figure 12. We presented the
results produced by both pre-defined dictionary and KSVD
learned dictionary on different types of defects in parallel.
We can see that KSVD achieved results of better quality
with regards to peak signal to noise ratio, which is defined
as follow:

PSNR = 10 log10

(
MAX2

i

MSE

)
whereMAXi denotes the maximum possible pixel value of
the image, and MSE denotes the mean square error between
the reconstructed image and the original noise-free image.
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Deteriorated image Deteriorated image

Person detection Person detection

Creating mask Creating mask

Restoration result Restoration result

Figure 9: Results of end-to-end scene restoration pipeline

We notice that the less the defects are, the better the re-
construction quality the algorithm will produce. To test the
limit of this algorithm, we randomly choose 80% pixels and
treat them as the unknown areas and then use our algorithm
to reconstruct this image. The results are shown in Figure
12. We can see that this algorithm is still able to reconstruct

the image with satisfying results even if 80% of the infor-
mation is lost.

Figure 10: Left: Text degraded image, PSNR = 14.03dB
Middle: Reconstruction using pre-defined DCT dictio-
nary,PSNR = 30.9dB Right: reconstruction using KSVD
learned dictionary, PSNR = 33.09dB

Figure 11: Left: Scratch degraded image, PSNR = 19.09dB
Middle: Reconstruction using pre-defined DCT dictio-
nary,PSNR = 33.68dB Right: reconstruction using KSVD
learned dictionary, PSNR = 35.94dB

Figure 12: Left: Degraded image with 80% pixel loss,
PSNR = 6.42dB Middle: Reconstruction using pre-defined
DCT dictionary,PSNR = 24.27dB Right: reconstruction us-
ing KSVD learned dictionary, PSNR = 26.75dB

5. Discussion and Conclusion
5.1. Discussion

Our proposed scene restoration generally works well re-
garding to detecting people and inpainting. However, in
some situations it might fail. Figure 13 and Figure 14 shows
some images that our algorithm doesn’t perform well on.

Figure 13 illustrate one possible situation our proposed
pipeline might fail, which is the existence of human shad-
ows. HOG feature descriptors are not able to detect shad-
ows, so the shadows cannot be included in the bounding as
wanted, causing a ghost effect in the inpainted results.
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As can be seen from Figure 14, if the background pattern
is too repetitive, the inpainting errors will be magnified. An-
other possible reason for this failure might be the bounding
box being too large, which gives more challenges to the in-
painting step. In this situation, we can adopt other patch
matching algorithm since we have prior knowledge of the
scene. Another possible solution is to try some finer seg-
mentation methods, like deepmask proposed by Facebook
in 2015[12].

Figure 13: Shadows creating ghost effects

Figure 14: Repetitive background pattern magnifies inpaint-
ing errors

5.2. Conclusion

Our goal for this project is to create an end-to-end scene
restoration pipeline. We adopt HOG feature descriptor for
the detection stage, and proposed an improved exemplar-
based image inpainting algrithm for inpainting stage. In
section 4.2.3, we can see that the proposed pipeline works
well. Besides creating the pipeline, we also studied and im-
plemented sparse coding based image inpainting algorithm.
Future work should focus on more robust HOG detection
and finer image segmentation.
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7. Appendix
For all codes and video demos of this project, please

visit https://github.com/Leedehai/cs231a_

inpaint.git
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